Jual Zeolit Di Semarang | Ady Water Jual Zeolit Murah
Jual Zeolit Di Semarang | Ady Water Jual Zeolit Murah
Zeolit merupakan katalis yang sangat berguna yang menunjukkan beberapa sifat penting yang tidak ditemukan pada katalis amorf tradisional. Katalis amorf hampir selalu dibuat dalam bentuk serbuk untuk memberikan luas permukaan yang besar sehingga jumlah sisi katalitik semakin besar. Keberadaan rongga pada zeolit memberikan luas permukaan internal yang sangat luas sehingga dapat menampung 100 kali molekul lebih banyak daripada katalis amorf dengan jumlah yang sama. Zeolit merupakan kristal yang mudah dibuat dalam jumlah besar mengingat zeolit tidak menunjukkan aktivitas katalitik yang bervariasi seperti pada katalis amorf. Sifat penyaring molekul dari zeolit dapat mengontrol molekul yang masuk atau keluar dari situs aktif. Karena adanya pengontrolan seperti ini maka zeolit disebut sebagai katalis selektif bentuk.
Aktivitas katalitik dari zeolit terdeionisasi dihubungkan dengan keberadaan situs asam yang muncul dari unit tetrahedral [AlO4] pada kerangka. Situs asam ini bisa berkarakter asam Bronsted maupun asam Lewis. Zeolit sintetik biasanya mempunyai ion Na+ yang dapat dipertukarkan dengan proton secara langsung dengan asam, memberikan permukaan gugus hidroksil (situs Bronsted). Jika zeolit tidak stabil pada larutan asam, situs Bronsted dapat dibuat dengan mengubah zeolit menjadi garam NH4+ kemudian memanaskannya sehingga terjadi penguapan NH3 dengan meninggalkan proton. Pemanasan lebih lanjut akan menguapkan air dari situs Bronsted menghasilkan ion Al terkoordinasi 3 yang mempunyai sifat akseptor pasangan elektron (situs lewis). Permukaan zeolit dapat menunjukkan situs Bronsted, situs Lewis ataupun keduanya tergantung bagaimana zeolit tersebut dipreparasi.
Tidak semua katalis zeolit menggunakan prinsip deionisasi atau bentuk asam. Sifat katalisis juga dapat diperoleh dengan mengganti ion Na+ dengan ion lantanida seperti La3+ atau Ce3+. Ion-ion ini kemudian memposisikan dirinya sehingga dapat mencapai kondisi paling baik yang dapat menetralkan muatan negatif yang terpisah dari tetrahedral Al pada kerangka. Pemisahan muatan menghasilkan gradien medan elektrostatik yang tinggi di dalam rongga yang cukup besar untuk mempolarisasi ikatan C-H atau mengionisasi ikatan tersebut sehingga reaksi selanjutnya dapat terjadi. Efek ini dapat diperkuat dengan mereduksi Al pada zeolit sehingga unit [AlO4] terpisah lebih jauh. Tanah jarang sebagai bentuk tersubtitusi dari zeolit-X menjadi katalis zeolit komersial pertama untuk proses cracking petroleum pada tahun 1960an. Akan tetapi katalis ini telah digantikan oleh Zeolit-Y yang lebih stabil pada suhu tinggi. Katalis ini menghasilkan 20% lebih banyak petrol (gasolin) daripada zeolit-X.
Cara ketiga penggunaan zeolit sebagai katalis adalah dengan menggantikan ion Na+ dengan ion logam lain seperti Ni2+, Pd2+ atau Pt2+ dan kemudian mereduksinya secara in situ sehingga atom logam terdeposit di dalam kerangka zeolit. Material yang dihasilkan menunjukkan sifat gabungan antara sifat katalisis logam dengan pendukung katalis logam (zeolit) dan penyebaran logam ke dalam pori dapat dicapai dengan baik.
Teknik lain untuk preparasi katalis dengan pengemban zeolit melibatkan adsorsi fisika dari senyawa anorganik volatil diikuti dengan dekomposisi termal. Ni(CO)4 dapat teradsorb pada zeolit-X dan dengan pemanasan hati-hati akan terdekomposisi meninggalkan atom nikel pada rongga. Katalis ini merupakan katalis yang baik untuk konversi karbon monoksida menjadi metana.
Zeolit mempunyai tiga tipe katalis selektif bentuk
1. Katalis selektif reaktan
Dimana hanya molekul (reaktan) dengan ukuran tertentu yang dapat masuk ke dalam pori dan akan bereksi di dalam pori.
2. Katalis selektif produk
Hanya produk yang berukuran tertentu yang dapat meninggalkan situs aktif dan berdifusi melewati saluran (channel) dan keluar sebagai produk.
3. Katalis selektif keadaan transisi
Reaksi yang terjadi melibatkan keadaan transisi dengan dimensi yang terbatasi oleh ukuran pori.
Rekayasa zeolit
Penelitian mengenai zeolit telah berkembang menuju preparasi material baru dengan memasukkan berbagai molekul atau ion ke dalam sangkar zeolit. Misalnya pigmen ultramarine pada struktur sodalite dan mengandung ion S3- yang terjerat pada sangkar yang memberikan warna biru yang menarik.
Salah satu bidang penelitian ini telah terfokus pada pembentukan deposit material semikonduktor pada sangkar zeolit. Hasilnya berupa partikel yang sangat kecil yang disebut titik quantum (quantum dots). Partikel ini mempunyai sifat elektronik, magnetik dan optikal yang sangat menarik yang merupakan konsekuensi dari ukurannya daripada dari komposisi kimia. Selama proses pengisian pori, titik quantum menjadi bersambung dan material yang dihasilkan mempunyai sifat intermediet diantara partikel diskrit dan bulk semikonduktor. Salah satu contohnya adalah band gap semikonduktor CdS yang membentuk kubik diskrit klaster (CdS)4 pada sangkar sodalite dari zeolit-A, -X dan –Y yang berbeda dengan bulk CdS.
Berbagai molekul atau ion lain dapat dimasukkan ke dalam ß-cages dari zeolit termasuk logam alkali, perak dan garam perak, selenium serta berbagai polimer konduktif. Berbagai material baru ini sedang diteliti dengan pusat perhatian pada sifat fisika yang penting (semikonduktor, fotokonduktif dan konduktivitas ion, luminescence, warna dan efek ukuran quantum) yang kemudian mempunyai kemungkinan eksploitasi secara komersial.
Zeolit merupakan katalis yang sangat berguna yang menunjukkan beberapa sifat penting yang tidak ditemukan pada katalis amorf tradisional. Katalis amorf hampir selalu dibuat dalam bentuk serbuk untuk memberikan luas permukaan yang besar sehingga jumlah sisi katalitik semakin besar. Keberadaan rongga pada zeolit memberikan luas permukaan internal yang sangat luas sehingga dapat menampung 100 kali molekul lebih banyak daripada katalis amorf dengan jumlah yang sama. Zeolit merupakan kristal yang mudah dibuat dalam jumlah besar mengingat zeolit tidak menunjukkan aktivitas katalitik yang bervariasi seperti pada katalis amorf. Sifat penyaring molekul dari zeolit dapat mengontrol molekul yang masuk atau keluar dari situs aktif. Karena adanya pengontrolan seperti ini maka zeolit disebut sebagai katalis selektif bentuk.
Aktivitas katalitik dari zeolit terdeionisasi dihubungkan dengan keberadaan situs asam yang muncul dari unit tetrahedral [AlO4] pada kerangka. Situs asam ini bisa berkarakter asam Bronsted maupun asam Lewis. Zeolit sintetik biasanya mempunyai ion Na+ yang dapat dipertukarkan dengan proton secara langsung dengan asam, memberikan permukaan gugus hidroksil (situs Bronsted). Jika zeolit tidak stabil pada larutan asam, situs Bronsted dapat dibuat dengan mengubah zeolit menjadi garam NH4+ kemudian memanaskannya sehingga terjadi penguapan NH3 dengan meninggalkan proton. Pemanasan lebih lanjut akan menguapkan air dari situs Bronsted menghasilkan ion Al terkoordinasi 3 yang mempunyai sifat akseptor pasangan elektron (situs lewis). Permukaan zeolit dapat menunjukkan situs Bronsted, situs Lewis ataupun keduanya tergantung bagaimana zeolit tersebut dipreparasi.
Tidak semua katalis zeolit menggunakan prinsip deionisasi atau bentuk asam. Sifat katalisis juga dapat diperoleh dengan mengganti ion Na+ dengan ion lantanida seperti La3+ atau Ce3+. Ion-ion ini kemudian memposisikan dirinya sehingga dapat mencapai kondisi paling baik yang dapat menetralkan muatan negatif yang terpisah dari tetrahedral Al pada kerangka. Pemisahan muatan menghasilkan gradien medan elektrostatik yang tinggi di dalam rongga yang cukup besar untuk mempolarisasi ikatan C-H atau mengionisasi ikatan tersebut sehingga reaksi selanjutnya dapat terjadi. Efek ini dapat diperkuat dengan mereduksi Al pada zeolit sehingga unit [AlO4] terpisah lebih jauh. Tanah jarang sebagai bentuk tersubtitusi dari zeolit-X menjadi katalis zeolit komersial pertama untuk proses cracking petroleum pada tahun 1960an. Akan tetapi katalis ini telah digantikan oleh Zeolit-Y yang lebih stabil pada suhu tinggi. Katalis ini menghasilkan 20% lebih banyak petrol (gasolin) daripada zeolit-X.
Cara ketiga penggunaan zeolit sebagai katalis adalah dengan menggantikan ion Na+ dengan ion logam lain seperti Ni2+, Pd2+ atau Pt2+ dan kemudian mereduksinya secara in situ sehingga atom logam terdeposit di dalam kerangka zeolit. Material yang dihasilkan menunjukkan sifat gabungan antara sifat katalisis logam dengan pendukung katalis logam (zeolit) dan penyebaran logam ke dalam pori dapat dicapai dengan baik.
Teknik lain untuk preparasi katalis dengan pengemban zeolit melibatkan adsorsi fisika dari senyawa anorganik volatil diikuti dengan dekomposisi termal. Ni(CO)4 dapat teradsorb pada zeolit-X dan dengan pemanasan hati-hati akan terdekomposisi meninggalkan atom nikel pada rongga. Katalis ini merupakan katalis yang baik untuk konversi karbon monoksida menjadi metana.
Zeolit mempunyai tiga tipe katalis selektif bentuk
1. Katalis selektif reaktan
Dimana hanya molekul (reaktan) dengan ukuran tertentu yang dapat masuk ke dalam pori dan akan bereksi di dalam pori.
2. Katalis selektif produk
Hanya produk yang berukuran tertentu yang dapat meninggalkan situs aktif dan berdifusi melewati saluran (channel) dan keluar sebagai produk.
3. Katalis selektif keadaan transisi
Reaksi yang terjadi melibatkan keadaan transisi dengan dimensi yang terbatasi oleh ukuran pori.
Rekayasa zeolit
Penelitian mengenai zeolit telah berkembang menuju preparasi material baru dengan memasukkan berbagai molekul atau ion ke dalam sangkar zeolit. Misalnya pigmen ultramarine pada struktur sodalite dan mengandung ion S3- yang terjerat pada sangkar yang memberikan warna biru yang menarik.
Salah satu bidang penelitian ini telah terfokus pada pembentukan deposit material semikonduktor pada sangkar zeolit. Hasilnya berupa partikel yang sangat kecil yang disebut titik quantum (quantum dots). Partikel ini mempunyai sifat elektronik, magnetik dan optikal yang sangat menarik yang merupakan konsekuensi dari ukurannya daripada dari komposisi kimia. Selama proses pengisian pori, titik quantum menjadi bersambung dan material yang dihasilkan mempunyai sifat intermediet diantara partikel diskrit dan bulk semikonduktor. Salah satu contohnya adalah band gap semikonduktor CdS yang membentuk kubik diskrit klaster (CdS)4 pada sangkar sodalite dari zeolit-A, -X dan –Y yang berbeda dengan bulk CdS.
Berbagai molekul atau ion lain dapat dimasukkan ke dalam ß-cages dari zeolit termasuk logam alkali, perak dan garam perak, selenium serta berbagai polimer konduktif. Berbagai material baru ini sedang diteliti dengan pusat perhatian pada sifat fisika yang penting (semikonduktor, fotokonduktif dan konduktivitas ion, luminescence, warna dan efek ukuran quantum) yang kemudian mempunyai kemungkinan eksploitasi secara komersial.